# Python numpy module basic usage

2022-02-02 14:13:50 Ice sky

# Python Numpy

## One 、 Array

### 1. establish

Numpy Including a variety of ways to create arrays

#### np.array(list)

Initialize an array by passing in a list ：

import numpy as np
#  Declare an array
arr = np.array([[1,2,3], [4,5,6]])
''' 1 2 3 4 5 6 '''


#### np.ones(shape)/np.zeros(shape)

All elements that generate the desired shape are 1(0) Array of ：

ones = np.ones((2,2))
''' output 1 1 1 1 '''
zeros = np.zeros((3,3))
''' output 0 0 0 0 0 0 0 0 0 '''


#### np.arange(begin, end, stride)

Generate a one-dimensional array according to the given interval and step size , The default from the 0 Start , In steps of 1, among ：

• begin: Starting value , optional
• end： Cutoff value , Required
• stride： step , optional
range = np.arange(0, 10, 2)
''' output: 0 2 4 6 8 10 '''


#### np.linespace(begin, end, count)

Similarly, this function also specifies an interval , But here's the difference ,linspace The third parameter refers to ： from begin Start to end Number of intermediate equal parts , That is, an array with the specified number of elements is returned , The step length is the average of the interval length for the number of specified elements , for example ：

ls1 = np.linspace(0, 10, 2)
ls1.size()
''' output 0, 10 size: 2 '''
ls2 = np.linspace(0, 10, 6)
ls2.size()
''' output 0, 2, 4, 6, 8, 10 size: 6 '''
ls3 = np.linspace(0, 10, 11)
ls3.size()
''' output 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 size: 11 '''


#### np.random.radint(min, max, shape)

When we need to create an array with random element size , It can be generated by this random number group ：

rand = np.random.radint(0, 10, 3)
''' output 4 2 0 3 8 1 9 0 1 '''


### 2. attribute

Numpy The array object contains several very useful properties that describe the characteristics of the array ：

• ndim： Dimension of array
• size： Array size , That is, the number of elements included
• shape： The shape of the array
• dtype： The type of array

for example ：

temp = np.ones((2,2))
''' temp.ndim: 2 temp.size: 4 temp.shape: (2,2) temp.dtype: float '''


### 3. Method

#### 3.1 Shape transformation method ：reshape(shape), flatten()

Shape change , You can adjust the shape of the array , An array commonly used to convert a range to a desired shape ：

range = np.arange(0, 10, 3) # [0, 3, 6, 9], size: 4, shape: (1,4)
range.reshape((2,2))
''' output 0 3 6 9 '''
range.flatten()
''' output 0 3 6 9 '''


#### 3.2 Statistical methods ：min, max, ptp, median, mean, std, var, sum

A little … \Huge\color{BROWN} A little \dots

#### 3.3 Set operations

#  example
# a: 1,2,3,4,5,6
# b: 5,6,7,8,9

#  intersection
numpy.intersect1d(a,b)
''' output 5, 6 '''

#  Difference set
numpy.sestdiff1d(a,b)
''' output 1, 2, 3, 4, 7, 8, 9 '''


From the function name , obviously , The function is used to calculate the intersection between one-dimensional arrays , If the input array dimension is not one-dimensional , At this time, the function will first modify the array flatten operation , Unified into a one-dimensional array and then calculated . setdiff1d Empathy

#### 3.4 Correlation coefficient calculation and mask array

The correlation coefficient is known ：
ρ = C o v ( X , Y ) σ X , σ Y \rho=\frac{Cov(X,Y)}{\sigma_{X},\sigma_{Y}}
also ：
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y)
be ：
ρ = E ( X Y ) − E ( X ) E ( Y ) σ X σ Y \rho=\frac{E(XY)-E(X)E(Y)}{\sigma_{X}\sigma_{Y}}
When the correlation coefficient is calculated by code , At this point, you can create a file containing X , Y X,Y Two arrays of x and y, be X Y XY by x * y, Then, according to the statistics member function of the array mentioned above, we can get ：

# E(XY)
e_xy = (x * y).mean()
# E(X)E(Y)
e_x_y = x.mean() * y.mean()
# X  Standard deviation
sigma_x = x.std()
# Y  Standard deviation
sigma_y = y.std()


Finally, the correlation coefficient can be calculated ：

corrcoef = (e_xy - e_x_y) / (sigma_x * sigma_y)


Now combine Numpy The correlation coefficient matrix calculation function provided ：

np.corrcoef(x, y)
''' output 1 corr(x,y) corr(x,y) 1 '''


The corresponding correlation coefficient can be obtained at the corresponding row and column position , The diagonal is the self correlation coefficient , by 1 1